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The propagation of disturbances through an atmosphere that is, in its undisturbed 
condition, undergoing a spatially uniform chemical explosion is analysed on the 
assumption that the disturbances are of small amplitude. When the latter are arbi- 
trarily small, and therefore classifiable as acoustic, the progress of the ambient 
explosion is undisturbed to first order and a rather complete history of the acoustic 
waves (including weak shock waves) can be constructed. The generally amplifying 
effect of the explosion on the disturbances, which has previously been identified at 
wave heads, is found to occur throughout the disturbed domains. 

When the disturbance amplitude becomes comparable to the ratio of the thermal 
energy of the gas to the combustion-reaction activation energy, the ambient explosion 
becomes involved in the disturbance to first order. For large activation energies a 
small disturbance theory can be constructed to account for the disturbance behaviour ; 
at present it is limited to time intervals from initiation that are shorter than the 
' no-depletion ' homogeneous ignition time. 

1. Introduction 
Some previous work by the writer (Clarke 1977, 1978) has been aimed at an under- 

standing of the interaction between compression or expansion waves and the homo- 
geneously exploding atmosphere through which they are presumed to propagate. By 
confining attention to the head of such disturbances it has been possible to draw some 
useful conclusions in an analytical or near-analytical manner, with the sole assumption 
that transport effects (mass diffusion, viscosity, heat conduction) are negligible. 

If the complete disturbance, from its head to its tail, is presumed to be of limited 
amplitude one can deploy the techniques of small disturbance theory and thereby 
analyse the whole disturbed domain provided, once again, that transport effects are 
negligible. 

The following work deals first with arbitrarily small (acoustic) amplitude disturb- 
ances, and then goes on to identify a not-so-small disturbance situation in which 
amplitudes are comparable to an inverse (dimensionless) activation energy for the 
combustion, or explosion, reaction. Some of the essential features of expansion and 
compression (including shock) wave behaviour are discussed. The amplifying effect 
of the explosion is a central feature of all phenomena. 
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2. Conservation equations 

processes in a chemically reacting atmosphere can be written as follows: 
The conservation equations governing the motion of plane, or purely time-dependent, 

Pt + UP, +pux = 0, 

Put 4- Puu, + P X  = 0, 

ct+ucx+w = 0, 

{Pt + (u It .f)PX> +PUf {ut + (U f Uf) ux> - q g  = 0,  (4% b )  

where one must take either upper signs, giving (au), or lower signs, giving ( 4 b ) .  The 
quantities p ,  p, u, c and uf are, respectively, the pressure, density, gas velocity, fuel- 
species mass fraction and frozen sound speed; the last quantity is given by 

= YIPPf, PPf -= (aP/aP)F,.? (5) 

q = P(Y - 1) (af pi)-l(ah/aC)p,p, Paf = - (aP /a%J, , ,  

where y is the ratio of the frozen specific heats and Pf is the frozen isothermal corn- 
pressibility ( p  is the absolute temperature). The quantity q is 

( 6 )  

where h is the enthalpy of the mixture and af is the frozenvolume expansion coefficient. 
9 is the rate of progress of a simple nth-order decomposition nF + P of n fuel molecules 
F into the product species P, namely 

w = nwSZ[cn-(l-c-cD)s]. (7) 

W is the molecular weight of F ,  cD is the (constant) mass fraction of an inert diluent 
gas and SZ and 6 are a chemical frequency and the equilibrium ‘constant ’, respectively. 

Equations (4u, b )  make it clear that the characteristics of the equation system lie 
along 

and that wavelets propagating with a local speed uf relative to the gas velocity u 
therefore play an important part in transmitting disturbances through the mixture. 

The following work will be entirely concerned with the propagation of small- 
amplitude disturbances (although their nonlinear behaviour is to be emphasized) 
superimposed upon a background ambient atmosphere undergoing a spatially homo- 
geneous explosion. The special homogeneous-explosion versions of (1)-(4) have zero 
values for all x derivatives, and are accordingly 

dxldt = u f af (8% b)  

u = uo(t) = 0, p = po(t) = constant = pi, 

pot - qowo = 0, C o t  +go = 0, 

(9% b )  

(9c, 4 
where p = po(t) and c = co(t); q0 and go are the relevant special values of q and 92. 

turbations to the ambient state (8 u, b )  reduce to 
Clearly af = afo(t) in this ambient atmosphere, so that in the absence of any per- 

dx/dt = *af0(t)  

and the related characteristic lines, or frozen wavelets, become 

2 T / : u f o ( f ) d f  = constant. 
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In  order to deal with those nonlinear effects, which arise from the difference between 
the propagation speeds (8) and ( lo) ,  it is therefore necessary to take as a new set of 
independent .variables the dimensionless pair (5, T )  defined as follows: 

where ufi is the initial value of ufo, namely afo(0), and gi is a typical value of the rate 
of progress of the chemical reaction. The dimensionless scale factors gE and gT are 
functions of a small parameter E that measures the magnitude of the gasdynamic 
disturbance to the exploding atmosphere, and both are to be found in the course of the 
analysis. An over-riding requirement for g6 and g, can be quoted in the form 

g T / g l  = o(1) as s+O. (13) 

3. Approximate equations for acoustic-level distributions 

arbitrarily small amounts; accordingly one can write 
The variables p ,  p ,  u and c are assumed to vary from their ambient values by 

where ufi is the value of the frozen sound speed in the spatially homogeneous atmo- 
sphere at  time zero. The frozen sound speed is also written as 

af(5, t )  = afo(t) +afiga(~) ajl'(E9 TI. (18) 

The dimensionless gauge factors g$(c) ($ = p ,  p ,  c, u, a )  all depend upon a small 
parameter e, to be defined more carefully later on, and are all o(1) in the limit as 
B J O .  The dimensionless coefficient functions p(l), etc. are therefore only the first 
approximations to the disturbances imposed upon the ambient exploding atmosphere 
(the definitions in (14)-(18) would be quite general if p(l) etc. were shown to depend 
upon the g+ factors as well as on t and T ) .  A solution is now sought for p(1) etc. in the 
limit as E -+ 0 with 5 and T fixed; p(1) etc. and all of their derivatives with respect to 
6 and T are assumed to be O(1). 

It readily follows from (1) and (2) that 

9, = 9 p  = 9, 

and these equations integrate to give 

aj,p(" = $,p(l) f' = a f a  .a f0 u(1). (20) 

It is assumed that p(", p(1) and u(1) all vanish identically somewhere in the field (e.g. 
for all x greater than some chosen value at t = 0 = T). 
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The quantity I?, is defined by 

where s is the entropy of the mixture; the second version of (21) follows from the fact 
that a; is also equal to (ap/ap),,,. Making use of (19), one can write 

where afiA0 ( a c ~ , / h ) p , p ~ o .  

It then follows by using (20) and (21) that 

afi g, = gu( rfo - i afi u(1) + ari A, ge c(1). (23) 

I?,, is the value of rf in the ambient, but time-varying, atmosphere. 

form 
Now consider (4a) and observe from (Sc), (1 1) and (12) that it can be written in the 

{g['fO(P -PO16 + g T  ufi(P -POIT -g&u + -PO)6} 

+ gT afi uT - g6(u + a f )  U E }  - ('fi/9i) {qg - q O g O }  = ' 9  + Paf (96 afO (24) 

since po  does not depend upon x. Making use of (la)-( 18) and the results contained in 
the subsequent equations, (24) reduces to 

gT gup!? - 96 9: rfO u(l$p) - 96 gu gc A0 c(l)pp) 
+ afo aE1Zl(gT gu %g' - 96 rfo %%?) - gu gc afi efr) %F'> 

- ( p i ~ ~ i 9 i ) - 1 { ~ ~ - ~ 0 9 0 }  = 0. (25) 

Only the most significant part of each term of (24) is retained in (25), on the basis of 
the hypothesis that each of g, and gc and hence also g, is o( 1).  

At this stage it is appropriate to expand the difference q 9  - q 0 9 ,  as follows: 

q ' - ~ o g o  N (@)poguPia?iP(l)+ (q@)poguPiP(l) + (@)cogcc(l)+ * * * ,  (26) 

where ( ~ 5 % ' ) ~ ~  is written for (a(q9) /@.1)~,~ evaluated in the time-varying ambient 
atmosphere, with comparable definitions for (qg),, and (~9)~~. With (20), (26) becomes 

q g  - PO 9 0  1~ gu pi afi U f o  d o  ~ ( l )  + ( ~ 9 ) c o  gc c'l), 

where d o  = k W p 0  + a ~ o w ) p o .  (28) 

(27) 

The one equation that has not so far been examined in the light of the small-disturb- 
ance idea is (3), which, in view of (9d)  and the fact that c,  does not depend upon x, 
can be written in the form 

( C - C o ) t + U ( C - c o ) 2 + 9 - 9 0  = 0.  (29) 

Using (14)-(17), and the relevant results that follow these equations, (29) can be 
written as 

gcg55%' ia foa~1c~)+  (9)popiufiufoguu(1)+ ( ~ ) p o p i a f i a f i l g u ~ ( l ) +  ( 9 ) c o g c c ( 1 )  = 0. (30) 

Once again only the most significant terms are displayed, based on gu = o(1) and 
condition (13). Furthermore (9),, etc. have comparable definitions to ( ~ 9 2 ) ~ ~  etc. 
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The only way in which the rate of change of c can be involved in a non-trivial way 
with the propagating disturbance is for the product gc gs, which denotes the order of 
magnitude of the first term in (30), to equal gu and/or gc. In  the latter case gs = 1 
and combination of (25) and (27) shows that the chemical-source terms, being then 
O(g,), dominate the remaining terms, which are essentially o(g,) in the circumstances. 
The presumption that all terms such as do or ~ ~ ( 9 2 ) ~ ~  are made O(1) on division by 
92i is implicit in the foregoing arguments, as it will be in the arguments that follow. 
Furthermore q/pi is properly assumed to be O( 1). It is now evidently necessary for 
g, gs to equal 9,; in addition the nonlinear gasdynamic behaviour can be preserved 
only if gT gu = gsg& as is evident from (25). The chemical-source terms in (25) [see 
(27)] are then of a comparable significance only if gs g: = g,. It follows that a consistent 
and correct scaling for the present problem has 

gT = 1, = gl', gc = e2. (31) 

The value of gu = B ,  say, is fixed by the initial-value data. 

for p(l), u(l) and ~(1): 

The combination of (25), (27), (30) and (31) now gives the following pair of equations 

pp - r,, + af, a ~ l  {ug) - rfo u(l)up) - ( d o ~ ~ l )  u(1) = 0, (32) 

c p  +pi u;i92;1 + us2(9)po} u(1) = 0. (33) 

The variations in the fuel mass fraction that are associated with the propagating 
disturbance, namely BW), can be calculated from (33) once the associated velocity 
perturbations eufiu(l) are known. Using (20) and (32), u(1) can be found by solving the 
nonlinear equation 

ug) - r,, u(uuf) + *{(as1 a,oT) - ( d o ~ z l ) }  u ( ~  = 0, (34) 

subject to suitable initial- or boundary-value data. 

4. Solution for u(l) 

(35) 
With P defined such that 

( aE/aT)B = - pro u(l) 

(34) integrates to give uj0 u(l) = F(/3) exp (36) 

(N.B. (12) and (31) show that T9i1 = t . )  With u(u regarded as a function of /3 and T 
it is evident that F ( P )  is just the value of uj0 u(l) when t = 0. Writing this quantity as 
a$ uil)(,B) it follows that (36) gives 

u(1) = u(l)(p, T) = ~ i ~ ) ( / 3 ) a ) ~ u ~ ~ e x p  (37) 

Combination of (35) and (37) leads to the following relation between 5, t and p, where 
p is chosen to have the value - x when t = 0: 
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From (37), au(l)/ax at fixed t is proportional to (auplap) pX, where px is written for 
ap/ax at fixed t .  Equation (38)) with (37), shows that 

px = - [ 1 - €af 1: r;, ug)(p, t ' dt')-l, (39) 

so that any compression wave, for which up) > 0, must eventually lead to a shock 
wave after a sufficient lapse of time since /3, must ultimately become unbounded. 
When do is positive, as it certainly is for the case of a chemically irreversible explosion 
reaction, for example (Clarke 1978), (37) indicates that IupJ is most likely to increase 
rapidly from its initial value I uip I ; the small reduction due to the likely increase in a, 
with time is more than offset by the behaviour of the exponential. 

* = € a f i F ,  
au(1) ap Since, at  a fixed time, 

ax p a  
it follows from (37) and (39) that 

With a few notational changes (40) is identical with the exact result obtained at a 
wave head whose location is marked by a discontinuity in &/ax (Clarke 1977). It is 
here extended to apply throughout the domain of the disturbance on the under- 
standing that the latter is small (i.e. ./afi = O(B)) and provided that 18, + 0. The 
fitting of shock waves into domains for which the inequality is violated will be discussed 
briefly below. Further limitations on the present results will also be described sub- 
sequently. 

It must be remarked in passing that the result displayed in equation (42) of the 
1977 paper by the writer is unnecessarily complicated by the existence of a term 
which appears there as 

(afi/afo)exP ( / t A e ( O d q  tr 

and which happens to be equal to unity ! 

5. Illustrative examples 
The analysis leading to solutions like (37) and (38), for example, is of a fairly general 

character, especially in so far as the reaction term 9 is concerned. It is now expedient 
to choose a special form for W which is a close model of physico-chemical reality and 
is also such as to make evaluation of terms like 

relatively simple. The model, already used by the writer for a similar purpose (Clarke 
1978), makes S in (7) zero and expresses the frequency Q as Bexp ( - p E A / p ) ,  where 
B is a constant pre-exponential factor and E ,  is the activation energy of the (now 
irreversible) burning reaction. Coupled with the assumption that the specific-heat ratio 
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= 1 and y and the 'energy of formation' (ah/&),,, are both constant while ctf 
pBf = p / p ,  the combination of (5)-(7) leads to the result that 

where poi is the initial value po(0) of po(t) .  
Observe that none of the foregoing results makes any demands about the size of 

pEA/p, although one may certainly demand that it is not negative; we shall find i t  
necessary to comment on the relative sizes of pEA/p and E later on. The geometric 
shape or extent of the disturbance is strongly influenced by the integral of Fro times 
the expression in (4l), as can be seen by consulting (38). With constant y ,  rf0 becomes 
just $ ( y +  l) ,  so that one is then concerned with the value of I ,  where 

in the present circumstances. As shown previously (Clarke 1978), it is convenient to 
calculate I / t i g n ,  where t ign is called the ignition time, which in this case has the value 

(porn is the maximum, final, pressure in the homogeneous explosion). 
The information contained in (38) can now be re-presented in the form 

and I / t i g n  is plotted us. t/t,,, in figure I for various values of p i  EA/poi. In  fact it is 
rather more convenient to plot ( I  - t ) / t , ,  and figure 1 depicts this number as well as 
the explosion pressure and the associated velocity-amplitude factor. The latter is just 
the ratio u'l)/uil) from (37), which has the specific form given in (41) in the present case. 
The explosion pressure history has been calculated numerically from (9 c, d )  with the 
'rate-function' ~24' as described above. 

Figure 1 ( b )  shows that the magnitude of an initial disturbance is increased by the 
homogeneous explosion, the extent of the amplification depending strongly upon the 
initial relative activation energy pi EA/pOi. The asymptotic value of the amplification 
is found by putting po = porn in (41). On a given wavelet or characteristic /3 is fixed 
and its shape on an x, t picture is given by (44). Figure 1 ( c )  shows that I increases 
more rapidly than t ,  which is the value of I when the system is chemically inert and 
there is no change in the ambient state. In a wholly expansive disturbance, for which 
u@) falls monotonically from zero a t  the wave head to some value ui(B,) < 0 at  the 
tail of the wave, it can be seen from (44) that the characteristics spread out more 
rapidly than they would otherwise do in an inert atmosphere as a result of this 
behaviour of I .  This extra spreading-out of the simple expansion does not wholly 
compensate for the amplification of the gas velocity and it can be inferred, from (40) 
and the results in (44) and figures 1 ( b )  and (c),  that the ambient explosion processes 
act to increase the local magnikude of both u and au/ax. The head of the expansion 
(,8 = 0, say) propagates with the time-varying speed afo, while the tail, at Be, travels 
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FIGURE 1. (a)  The pressure 218. time in a homogeneous explosion (constant-density process) 
supported by a first-order chemically irreversible reaction for three values (5 ,  10 and 20) of the 
dimensionless activation energy pi Ea/p,,. The full lines are derived from numerical integration 
of (Qc, d )  combined with (50)  and to that extent illustrate the exact solution; the dotted lines 
are from the no-depletion approximation (63). The ignition time t,, is defined in (43). (b )  The 
velocity amplification factor 218. time according to the acoustic theory [see (37)]. (c) The integral 
I [defined in (42)l us. time. I is an important factor in the shape of characteristics [see (44)] and 
shock waves [see (49), for example] on an 2, t picture for acoustic disturbance amplitudes. 

a t  the slower speed ur0 + eufi uil)(be) dI /d t  (remember that uil) < 0). Since perturbations 
to ambient values are essentially limited in scale to O ( E )  the tail of the wave must 
still propagate in the + x direction for the present theory to be valid. It is interesting 
to speculate on what may happen if E is not limitingly small and d l / d t  becomes very 
large, as it will when pi EA/poi is large. It is also interesting to observe that the gas 
velocity behind (i.e. to the left of) the present isolated expansion must become more 
negative with time through the agency of the explosion processes; if the expansion 
is produced by a piston retreating into x < 0 then the piston must accelerate; if it 



Disturbances in an exploding atmosphere 351 

does not do so and continues to travel at the velocity eafiuil)(Pe) there must be a 
compensatory compression wave generated between the piston face and the expansion. 
Such matters may be important for explosions taking place within confined spaces 
whose volume changes with time. 

This is perhaps an appropriate place to introduce the question of shock waves. It 
has already been remarked that a compression will steepen as time proceeds, and that 
the present solution will fail locally where Pz becomes unbounded (see (39) et seg.). The 
present model allows a more specific interpretation of the latter result, namely that 
a shock will form on a characteristic /3 when 

Eafiu&)*(y+ 111 = I. 

Since I > t for all t > 0 this condition must ultimately be met for any positive uiB 
values. 

If the local chemical time is long compared with the time of passage of an element 
of gas through a conventional diffusion-resisted shock front it will be reasonable to 
treat the latter as a Rankine-Hugoniot discontinuity across which the chemical 
composition does not vary. Since the time of passage is measured in only a few mean 
molecular collision intervals, even for weak waves, and chemical times are invariably 
many such intervals, the assumption is evidently a good one and will be adopted here. 
In  view of the fact that the characteristics in the present problem have the form 
given in (44), it is possible to take over the shock-fitting formulae derived by Whitham 
(1974, p. 334, for example) and to locate the discontinuity where x = xs, defined by 

J;af,,dt-x8 = ~ ~ - e a ~ ~ u i 1 ) ( ~ ~ 1 + ( y +  1) (45) 

[up)(pl) + ui1)(~,)1 [p, -pll = 2 1;: u$l)(a) da. 

= Pa - €afi uP)(P,) I$(r + 11, (46) 

where p1 and Pz,  the characteristics ahead of and behind the shock, are found from 

(47) 

As a simple example consider the initial state 

Combination of (45)-(48) then shows that 

The gas velocity behind the shock a t  any time is given by (41) times €afi in these 
circumstances. Figures 1 ( b )  and (c) illustrate how the shock wave described by (49) 
is accelerated and strengthened by the ambient explosive atmosphere. 

6. Not-so-small perturbations 
There is a tacit assumption in the foregoing work that E is small enough to make the 

perturbation analysis valid. Some idea of the restrictions implied by the phrase 
‘small enough ’ can be understood in the light of the particular results given in the last 



352 J .  F. Clarke 

section, but it is necessary to go back to the development of the difference q@ - qo@o 
as a Taylor series in (26) et seq. to see the real limitation. As explained in the previous 
section, the chemical frequency factor s2 may well contain a term exp ( - -pEJp) ,  so 
that differentiation of 9 with respect to p or p will lead to the appearance of terms 
proportional to (pEAIp)N9?, where N is the number of differentiations. Evidently 
a Taylor-series development such as (26) will be valid only if pEAs /p  is very small 
(indeed o( 1) in the limit + 0); in other words, when the basic disturbance amplitude 
e is as large as a typical value of pip (such as poi/pi) divided by the activation energy 
EA, the analysis of 3 3 breaks down. When pi EA elpoi is O( 1) as e+ 0 the disturbance 
imposed on the ambient atmosphere is large enough to interfere with the course of the 
homogeneous explosion to a first-order extent; this happens as a consequence of the 
extreme sensitivity of the reaction frequency s2 to changes in temperature when the 
activation energy is large. 

Some progress towards a solution of this problem can be made by examining 
perturbations from the initial, constant, values of the dependent variables in place 
of the previous method, in $3 ,  which examined perturbations from the ambient 
time-varying field [see (14)-(18)]. The arguments used to develop the scalings are of 
course very similar to those employed in $ 3 .  

A specific form of 9 must be selected in this case, namely 

9 = n WBexp { -ppoi/epip)cn, (50 )  

where 

With the simplifying assumptions that af does not depend upon c while (ahlac),,, 
and y are constant, the analysis proceeds as follows. First write 

p = poi + af"i p"), (52) 

where the quantities with superscript (1  ) depend upon [ and T, which are defined as 
follows : c. 

€afi( = g i ( a f i t - x ) ,  T = B i t .  b )  
A Bi is defined by 9% E q i9 i /Ep ia j i  = (q i /p i&)  nWBe-lfee-lcti 

with P i  = PAY-- 1 )  (ah/ac),,,. ( 5 6 4  

gi = l/yt,gn. 

(56c) 

Since ( S c ,  d )  show that picoi = porn -poi when qo = constant = qi, comparison of (43) 
and (56c) shows that 

(57) 

The foregoing variables, together with (l), (2) and the limit E + O  with 5 and T 

(58)  

(59) 

fixed, show that 
p(1) = u'1)((, T ) ,  

p'1) = u(1'([, T) + f ( T ) ,  
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where f(T) in (59) is evidently proportional to the perturbation to the initial pressure 
that arises from the homogeneous explosion [cf. (14) and (ZO)]. With the aid of (58)  
and (59), ( 4 a )  can now be reduced to the following nonlinear equation for u(l): 

~(~UQ)/LJT)~ = exp{(y- l)u(l)+yf)-fT, (Goal 

(Gob) ( ~ ~ / L J T ) ~  = - rfi u(l) - i y f .  

exp [ - (y  - I )  u(1)] - 1 = {exp [ - (y -  I )  uil)(p)] - 1)exp {icy - I )  f}, 

Since f must obey the version of ( 6 0 a )  that has u(l) = 0, ( 6 0 a )  can be integrated to give 

(61) 

where f(0) = 0 by hypothesis; ui1)(/3) is the initial value of 0, so that (61 )  gives u(l) 
as a function of the parameter /3 and off. The latter is a function of T derived from 
the elementary equationf, = exp ( y f ) ,  namely 

yf = -In(l-yT). (62) 

From (56b) and (57) it can be seen thatf-tcc as t+tign; the latter is the estimate of 
the ignition time based upon the (rather poor) assumption of no reactant depletion 

Evidently f grows steadily with increasing T. Combining (59) and (62) with (51) 
( ~ 0  21 Coi).  

and (52) shows that the homogeneous-explosion pressure is given by 

P = poi (1 - @ o h  EA) In (1 - yT)} (63 )  

and this result is depicted in figure 1 (a) ;  it also serves to illustrate the failure of the 
zero-depletion approximation as t +tign. 

The solution for u(1) must be completed by integrating (6Ob) to give the parameter 
pas a function of 5 and T. To this end (61) and (62 )  can be rewritten in the form 

-(y-l)u(l)  = ln{l+(exp[-(y-l)up)]-  l)(l-yT)-(r-l)/Q’}, (64 )  

and it is evidently possible to proceed to the required result even if only via numerical 
quadrature. 

Equation (64 )  reveals two important results rather readily. First, if uil)(B) < 0 then 
u(l)(p, T) grows more negative as T increases; the associated gasdynamic disturbance 
is an expansion which is evidently amplified in intensity by its interaction with the 
explosion; solution (64) breaks down only as yT = t/t,,, + 1. This result is in general 
accord with the acoustic disturbance theory; only the detailed structure of the ex- 
pansion will be different. Second, if ui1)(/3) > 0, signifying the presence of a compression, 
solution (64 )  begins to fail, in the sense that u(1)+ 00 as T --f T,, where 

exp [ - (7 - 1 ) uil’(P)l. (1 - y53cr-u/zr = 1 - (65) 

This unbounded growth of u(l) can be construed as an indicator of the onset of local 
explosion, with an accuracy comparable to that involved in the elementary no-depletion 
model. If u$l)(p) = 1 , 2 ,  or 3 and y = 1.4, (65) shows that 

(1 -y?) = 1 -tc/tign II 4-2 x lo4 ,  1-5 x or 8.1 x 

The compression is evidently reducing the ‘time to ignition’ but not, it  would appear, 
in any very dramatic way according to the present theory, whose basic invalidity in 
the vicinity oft, or tign must be emphasized (see figure 1 (a) ,  for example). 
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It is important to observe that the portent of a localized rapid reaction which occurs 
as a consequence of a propagating compression wave, as roughly modelled in the 
foregoing analysis, is a function of the velocity (or temperature) disturbance amplitude 
and not of the rate at which u(l)(P) changes. It is the latter quantity, specifically 
uy), that governs the first appearance of a shock wave within a compression. After 
some elementary but tedious integrations, etc., it can be shown that (ag/a/3), vanishes 
when 

where J = y(y + 1) exp [ - ( y  - 1) dw, ( 6 6 b )  

v = (1 - yT)-cr-l)/zr, 

and, as in $ 4, p = - x when t = 0. When u$J > 0, as it will be in a compression, (66a) 
shows that in general a shock wave will form; to be sure it must do so before yT = 1, 
but that is simply a limitation on the present approximate theory and not on the 
formation of the shock. It is interesting to observe that the time to shock formation 
does now depend to some extent upon the value of ui1)(/3), in contrast to the acoustic 
case in $ 4  (see (39) especially), but the role of uV(p) is still paramount. 

The present theory can really only hint at  the manner in which contiguous locations 
of explosive reactions and shock waves will evolve and interact. However, further 
developments along the present lines hold out substantial hope for progress in the 
understanding of these complex processes. 

7. Conclusions 
When the disturbance amplitude is very small it is possible to construct a complete 

first approximation to the behaviour of simple waves which propagate at the local 
frozen sound speed relative to a gas whose ambient state is changing with time. This 
can be done for all times from the initiation of the explosion, through its intense- 
reaction (explosive) phase and on to completion of the explosion. The growth of the 
initial, imposed, spatially non-uniform disturbance follows a simple rule in such a 
case, as witnessed by (37). The latter result is very general in respects other than that 
of the acoustic level of the disturbances, since it can account for ambient reactions 
that are either irreversibly explosive or initially in equilibrium. Principal interest is 
in the explosive situation, and a few sample calculations illustrate how the ultimate 
extent of the amplification is strongly dependent on the activation energy, and 
therefore the temperature sensitivity, of the burning reaction. The two specific 
examples of an initial expansion and an initial weak-shock compression of the explosive 
gas show how the presence of solid surfaces may alter the development of the wave 
in unexpected ways, although these are not worked out here. 

If the disturbance amplitude is as large as the inverse of the dimensionless activation 
energy the acoustic theory must be modified. The disturbance now exerts a first-order 
influence on the progress of the explosion, via the temperature-sensitive reaction 
frequency, and a nonlinearity from the chemical processes is fed into the disturbance 
equations, which already contain the usual convective nonlinearities of a longitudinal 
wave motion. When attention is confined to times for which reactant depletion is 
negligible the resulting equations can still be solved analytically. The solutions exhibit 
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the quantitative effects of amplitude, which affect the onset of rapid reaction, and of 
rates of change of amplitude, which can affect shock formation, provided the time 
does not approach the (rather artificial) no-depletion ignition time too closely. 
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